

Open Archive Toulouse Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/
Eprints ID: 2107

To cite this document: APVRILLE, Ludovic. SAQUI SANNES,
Pierre de. Making formal verification amenable to real-time UML
practitioners. In: EWDC 2009 European Workshop on Dependable
Computing, 14-15 Mai 2009, Toulouse, France, p.1-2.

Any correspondence concerning this service should be sent to the repository
administrator: staff-oatao@inp-toulouse.fr

http://oatao.univ-toulouse.fr/
mailto:staff-oatao@inp-toulouse.fr

Making Formal Verification Amenable to Real-Time
UML Practitioners

Pierre de Saqui-Sannes
CNRS ; LAAS ; 7 avenue du colonel Roche,

Université de Toulouse ; UPS, INSA, INP, ISAE ; LAAS
F-31077 Toulouse, France

Email: pdss@isae.fr

Ludovic Apvrille
System-on-Chip laboratory (LabSoC),

Institut Telecom / Telecom ParisTech / CNRS LTCI
2229, routes des Crêtes, B.P. 193

F-06904 Sophia-antipolis Cedex, France
Email: ludovic.apvrille@telecom-paristech.fr

Abstract— TTool, a real-time UML toolkit, offers user-friendly
interfaces to formal verification techniques such as reachability
analysis, observer-based analysis and automatic generation of
traceability matrices. Those techniques are surveyed in the paper.

I. I NTRODUCTION

The Unified Modeling Language or UML for short [1], is
a wide-spectrum modeling language and a de facto standard
supported by various tools from industry and academia. The
increasing development of real-time systems has stimulated
research work on ”real-time UML profiles” [2] that cus-
tomize UML with real-time capabilities. Those profiles also
commonly provide a formal semantics, as well as tools and
methodologies.
Real-time UML profiles reuse formerly developed formal
verification tools. For instance, the TURTLE Toolkit (TTool
[3]) developed for the TURTLE real-time UML profile [4],
implements interfaces to RTL [5], CADP [6] and UPPAAL
[7] formal verification tools. TTool particularly enables formal
verification of TURTLE diagrams against temporal require-
ments. The purpose of this paper is to demonstrate that TTool
hides the use of formal languages as much as possible to its
users and thus makes formal verification amenable to illiterate
practitioners, in particular in education context.
The paper is organized as follows. Section 2 introduces the
verification-centric method associated with TURTLE. Section
3 overviews TTool. Section 4 discusses user-friendly access to
formal verification. Section 5 concludes the paper.

II. TURTLE METHOD

We recommend using the TURTLE modeling language with
a seven-step, verification-centric method (supported by TTool).

1) Requirement capture using an extended SysML require-
ment diagram [8] with formal description of temporal
requirements.

2) Use-case driven analysis. Use-cases expressed in use-
case diagrams are documented by scenarios expressed
in the form of sequence diagrams, themselves being
structured with interaction overview diagrams.

3) Formal verification of analysis diagrams against tempo-
ral requirements.

4) Formal synthesis of design diagrams from analysis ones.
The system’s architecture is depicted by a class/object
diagram. Objects’ behaviors are described with activity
diagrams.

5) Object-oriented design. Class/objects and activity di-
agrams automatically generated in previous steps are
enriched.

6) Formal verification of design diagrams against temporal
requirements.

7) Rapid prototyping based on component and deployment
diagrams.

Note that step 4 is optional. Also, step 7 is not addressed in
this paper. At last, we recommend implementing incremental
modeling, which assumes diagram enrichment loops from step
3 to step 2, and from step 6 to step 5, respectively.

III. TT OOL: THE TURTLE TOOLKIT

TTool is an open-source toolkit that supports several UML2
/ SysML profiles, including TURTLE [4] and DIPLODOCUS
[9]. The main idea behind TTool, is that any model created
using a UML 2 profile may be formally verified using RTL,
CADP or UPPAAL (see Figure 1). In practice, UML diagrams
are first automatically translated into an intermediate format
expressed in formal language TIF, which serves as starting
point for deriving (RT-)LOTOS or UPPAAL code amenable
to verification tools.

IV. FORMAL VERIFICATION

A. Reachability analysis

A reachability graph (RG) characterizes the set of stable
states the system may reach from its initial state. The reacha-
bility analysis procedure implemented by RTL takes TURTLE
temporal and non-deterministic operators into account, and
generates a RG for bounded systems of reasonable size.
TTool syntactically checks a set of UML diagrams (e.g. for a
TURTLE design: class/objects and activity diagrams), gener-
ates formal code (e.g. in RT-LOTOS) and invokes the related
formal verification toolkit (e.g. RTL). From RGs, TTool com-
putes statistics on states and transition and identifies deadlocks
as well as shortest and longest paths in the graph. Also, TTool
may invokedotty to display RGs. Correspondence between
actions on RGs and UML operators are also computed.

SysML
Requirements

Analysis Design Deployment CTTool Application

TURTLE Intermediate Format

Java / JMI UPPAAL RT-LOTOS LOTOS

TTool

Other UML profilesRequirements
(main contribution of

the paper)

Formal
verification

RTL CADPUPPAAL

Model-checking
result (true,

false).
Simulation

trace

Minimization,
bisimulation

(CADP)

Architecture
and

Mapping

TURTLE UML Profile
DIPLODOCUS

SystemC

Fig. 1. TTool: profiles and verification techniques

Where other real-time UML tools focus on design diagrams,
TTool also enables formal verification of analysis UML dia-
grams. Thus, someone unfamiliar with object-oriented design
may nevertheless use TTool and apply formal verification to
use-case driven and scenario based analysis.
At last, TTool offers a user-friendly interface to check forlogic
formulae (e.g. with UPPAAL). For example, to decide whether
some UML action is reachable or not, or to study the liveness
of that action, it suffices to right click on the corresponding
action’s symbol. Temporal logic formulae may also be entered
directly in TTool.

B. Minimization of labeled reachability graphs

The RG of real-size systems may have millions of states
and transitions. Such a graph is hard to visualize. Also,
the statistics table is hard to interpret. Minimization is an
alternative.
A RG may be transformed into a Labeled Transition System,
a structure for which CADP implements minimization tech-
niques based on trace or observational equivalences just to
mention a few. Graph’s transitions associated with synchro-
nization actions are labeled by action’s name. Other transitions
are labeled by ”nil”. The minimization process discards as
much ”nil” as allowed by the equivalence relation and outputs
a quotient automaton which gives an abstract view of the
system’s behavior.
Minimization particularly applies to communication architec-
ture validation. Given a protocol layer modeled in TURTLE,
a labeled RG is generated (RTL, CADP) and minimized
considering service primitives exchanges as observable events.
The minimization outputs a quotient automaton of the service
rendered by the protocol layer.

C. Observer guided verification

Adding observers to TURTLE design diagrams enables
characterization of temporal requirement violation in theform
of RG transitions that may be searched for by TTool.

D. Temporal requirement traceability

TURTLE includes SysML Requirement Diagrams and ex-
tend them with formal specification of time-related properties.
TTool uses that formal specification to automatically include
observers into the TURTLE model. Then, it generates a
traceability matrix indicating which temporal requirements is
satisfied or not.

V. CONCLUSIONS

TTool offers to real-time UML practitioners a user-friendly
interface to well established formal verification techniques. It
has been used in various projects and for education purposes.
Unlike model transformation tools such as Topcased [10],
TTool lies in the category of UML tools based on profiles.
Ongoing work address methodological assistants [11] based
on patterns.

REFERENCES

[1] O. M. Group, “UML 2.0 Superstructure Specification,” in
http://www.omg.org/docs/ptc/03-08-02.pdf, Geneva, 2003.

[2] A. Gherbi and F. Khendek, “UML Profiles for Real-Time Systems and
their Applications,”Journal of Object Technology, vol. 5:3, pp. 149–169,
2000.

[3] LabSoc, “The TURTLE Toolkit,” in
http://labsoc.comelec.enst.fr/turtle/ttool.html.

[4] L. Apvrille, C. Lohr, J.-P. Courtiat, and P. de Saqui-Sannes, “TURTLE:
A Real-Time UML Profile Supported by a Formal Validation Toolkit,”
in IEEE transactions on Software Engineering, vol. 30, no. 7, July 2004,
pp. 473–487.

[5] “The RTL toolkit,” http://www.laas.fr/RT-LOTOS/index.html.en.
[6] “The CADP toolkit,” http://www.inrialpes.fr/vasy/cadp.
[7] “The UPPAAL toolkit,” http://www.uppaal.com/.
[8] O. M. Group, “UML Profile for Systems Engineering, SysML,Ver-

sion 1.0,” inhttp://www.omg.org/cgi-bin/apps/doc?formal/07-09-01.pdf,
Geneva, Sept. 2007.

[9] L. Apvrille, “TTool for DIPLODOCUS: An Environment for Design
Space Exploration,” inProceedings of the 8th Annual International Con-
ference on New Technologies of Distributed Systems (NOTERE’2008),
Lyon, France, June 2008.

[10] “Topcased project,” http://topcased.gforge.enseeiht.fr/.
[11] L. Apvrille and P. de Saqui-Sannes, “Adding a Methodological Assistant

to a Protocol Modeling Environment,” inProceedings of the 8th Annual
International Conference on New Technologies of Distributed Systems
(NOTERE’2008), Lyon, France, June 2008.

